Stochastic and Conditional Regulation of Nematode Mouth-Form Dimorphisms
نویسندگان
چکیده
Integrative research at the interphase between ecology, developmental, and evolutionary biology increasingly highlights the importance of phenotypic plasticity, the property of a single genotype to produce different phenotypes depending on environmental conditions. Plasticity occurs in multiple forms at the morphological, physiological, and behavioral levels. It can be reversible or irreversible, continuous or discrete, the latter also known as “polyphenism”. While plasticity has long been discussed as a concept of both, ecological and evolutionary significance, only recent experimental studies have begun providing insights into the associated molecular mechanisms. One promising system for genetic and molecular analyses of phenotypic plasticity is a feeding polyphenism in the nematode model organism Pristionchus pacificus. In this species, genetically identical nematodes can express two alternative mouth-forms, which are advantageous under different environmental conditions. Although the expression of these mouth-forms can be influenced by environment, even under fixed environmental conditions, genetically identical individuals of P. pacificus form both morphs. Thus, in addition to conditional regulation, mouth dimorphism in P. pacificus is regulated stochastically. Here, we discuss the importance of the stochastic regulation of the switch between alternative phenotypes and show that this characteristic provides a unique advantage for genetic, molecular, and experimental analyses. We then relate this stochasticity in mouth-form regulation to a similar phenomenon seen in bacteria, bistability, and finally discuss stochasticity as a bet-hedging mechanism for living in unpredictable environments.
منابع مشابه
Adaptive value of a predatory mouth-form in a dimorphic nematode.
Polyphenisms can be adaptations to environments that are heterogeneous in space and time, but to persist they require conditional-specific advantages. The nematode Pristionchus pacificus is a facultative predator that displays an evolutionarily conserved polyphenism of its mouthparts. During development, P. pacificus irreversibly executes either a eurystomatous (Eu) or stenostomatous (St) mouth...
متن کاملApplying a CVaR Measure for a Stochastic Competitive Closed-Loop Supply Chain Network under Disruption
This paper addresses a closed-loop supply chain network design problem, in which two different supply chains compete on retail prices by defining a price-dependent demand function. So, the model is formulated in a bi-level stochastic form to demonstrate the Stackelberg competition and associated uncertainties more precisely. Moreover, it is capable of considering random disruptions in the leade...
متن کاملPristionchus pacificus daf-16 is essential for dauer formation but dispensable for mouth form dimorphism.
The nematode Pristionchus pacificus shows two forms of phenotypic plasticity: dauer formation and dimorphism of mouth form morphologies. It can therefore serve as a model for studying the evolutionary mechanisms that underlie phenotypic plasticity. Formation of dauer larvae is observed in many other species and constitutes one of the most crucial survival strategies in nematodes, whereas the mo...
متن کاملCoordination of green supply chain network, considering uncertain demand and stochastic CO2 emission level
Many supply chain problems involve optimization of various conflicting objectives. This paper formulates a green supply chain network throughout a two-stage mixed integer linear problem with uncertain demand and stochastic environmental respects level. The first objective function of the proposed model considers minimization of supply chain costs while the second objective function minimizes CO...
متن کاملChromatin remodelling and antisense-mediated up-regulation of the developmental switch gene eud-1 control predatory feeding plasticity
Phenotypic plasticity has been suggested to act through developmental switches, but little is known about associated molecular mechanisms. In the nematode Pristionchus pacificus, the sulfatase eud-1 was identified as part of a developmental switch controlling mouth-form plasticity governing a predatory versus bacteriovorous mouth-form decision. Here we show that mutations in the conserved histo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016